Neueste Forschung zu Kalman-Filtern Teil3 | von Monodeep Mukherjee | Juni 2023

0
26


  1. Auf unbekannte Unbekannte schließen: Regularisierter, voreingenommener Ensemble-Kalman-Filter (arXiv)

Autor: Andrea Novoa, Alberto Racca, Luca Magri

Zusammenfassung: Aufgrund physikalischer Annahmen und numerischer Näherungen werden Modelle reduzierter Ordnung durch Unsicherheiten im Zustand und in den Parametern sowie durch Modellverzerrungen beeinflusst. Modellverzerrungen, auch Modellfehler oder systematische Fehler genannt, sind schwer abzuleiten, da es sich um „unbekannte Unbekannte“ handelt, das heißt, wir kennen ihre funktionale Kind nicht unbedingt a priori. Bei verzerrten Modellen können Datenassimilationsmethoden schlecht geeignet sein, weil sie entweder (i) „verzerrungsunbewusst“ sind, d. iii) Sie können Modellverzerrungen ableiten, die für dasselbe Modell und dieselben Daten nicht eindeutig sind. Zunächst entwerfen wir ein Datenassimilations-Framework, um eine kombinierte Zustands-, Parameter- und Bias-Schätzung durchzuführen. Zweitens schlagen wir eine mathematische Lösung mit einer sequentiellen Methode vor, nämlich dem regulierten, voreingenommenen Kalman-Filter (r-EnKF). Die Methode erfordert ein Modell des Bias und seines Gradienten (dh des Jacobi-Modells). Drittens schlagen wir ein Echo-State-Netzwerk als Modell-Bias-Schätzer vor. Wir leiten den Jacobi-Wert des Netzwerks ab und entwerfen eine robuste Trainingsstrategie mit Datenerweiterung, um die Verzerrung in verschiedenen Szenarien genau abzuleiten. Viertens wenden wir die r-EnKF auf nichtlinear gekoppelte Oszillatoren (mit und ohne Zeitverzögerung) an, die von verschiedenen Formen der Vorspannung betroffen sind. Der r-EnKF leitet Echtzeitparameter und -zustände sowie eine einzigartige Tendenz ab. Die von uns vorgestellten Anwendungen sind related für Akustik, Thermoakustik und Vibrationen; Allerdings eröffnet der r-EnKF neue Möglichkeiten für die kombinierte Zustands-, Parameter- und Bias-Schätzung für die Echtzeitvorhersage und -steuerung in nichtlinearen Systemen.

2. Der geruchlose Kalman-Filter zur nichtlinearen Parameteridentifizierung adaptiver Geschwindigkeitsregelungssysteme (arXiv)

Autor: Konstantinos Ampountolas

Zusammenfassung: In diesem Artikel wird ein Twin-Unscented-Kalman-Filter (DUKF) für die gemeinsame nichtlineare Zustands- und Parameteridentifizierung kommerzieller adaptiver Geschwindigkeitsregelungssysteme (ACC) entwickelt und untersucht. Obwohl die Kernfunktionalität serienmäßiger ACC-Systeme, einschließlich ihrer proprietären Steuerlogik und Parameter, nicht öffentlich verfügbar ist, betrachtet diese Arbeit ein Autoverfolgungsszenario mit einem von Menschen gesteuerten Fahrzeug (Chief) und einem ACC-Ego-Fahrzeug (Follower), das verwendet eine Fixed-Time-Headway-Politik (CTHP). Das Ziel des DUKF besteht darin, die CTHP-Parameter des ACC mithilfe von Echtzeitbeobachtungen der Raumlücke und der Relativgeschwindigkeit der Bordsensoren des Fahrzeugs zu bestimmen. Die Echtzeit-Parameteridentifizierung von Customary-ACC-Systemen ist für die Beurteilung ihrer String-Stabilität, ihres großflächigen Einsatzes auf Autobahnen und ihrer Auswirkungen auf den Verkehrsfluss und -durchsatz von entscheidender Bedeutung. In diesem Zusammenhang werden die Saitenstabilitätsbedingungen L2 und L∞ berücksichtigt. Die Observability-Rank-Bedingung für nichtlineare Systeme wird übernommen, um die Fähigkeit des vorgeschlagenen Schätzschemas zu bewerten, Bestands-ACC-Systemparameter anhand empirischer Daten zu schätzen. Der vorgeschlagene Filter wird anhand empirischer Daten bewertet, die von den Bordsensoren zweier SUV-Fahrzeuge aus dem Jahr 2019 gesammelt wurden, nämlich Hyundai Nexo und SsangYong Rexton, die mit serienmäßigen ACC-Systemen ausgestattet sind; und wird mit Batch- und rekursiver Kleinste-Quadrate-Optimierung verglichen. Der aus dem vorgeschlagenen Filter erhaltene Satz von ACC-Modellparametern ergab, dass das kommerziell implementierte ACC-System des betrachteten Fahrzeugs (Hyundai Nexo) weder L2- noch L∞-String-stabil ist.



Source link

HINTERLASSEN SIE EINE ANTWORT

Please enter your comment!
Please enter your name here